
IEICE TRANS. COMMUN., VOL.E87–B, NO.12 DECEMBER 2004
3611

PAPER

An Asynchronous and Distributed Rate Control Mechanism for
Elastic Services with Session Priorities

Tae-Jin LEE†a) and Gustavo DE VECIANA††, Nonmembers

SUMMARY We consider a rate control algorithm for elastic services
to allocate bandwidth in a network subject to throughput and fairness
constraints. Our algorithm achieves a max-min fair bandwidth allocation
among contending elastic connections, and has desirable properties in that
it can operate in a decentralized and asynchronous manner accounting in
part for heterogeneity in round trip delays. The algorithm is simple and
scalable in that, 1) the network links make local measurements of capacity
and calculate local ‘explicit rates’ which are fed back to sources without re-
quiring knowledge of the number of on-going connections, while 2) sources
adjust their transmission rates so as not to exceed the received explicit rate
indication. The algorithm is designed to track a “dynamic” network envi-
ronment. We discuss its stability, convergence, and feasibility issues related
to fair allocation and rate-based flow control. We also consider the role of
sessions with priorities to differentiate among users with elastic services.
Through rigorous analysis and simulations, we have shown that it has in-
deed desirable characteristics for networks with elastic services as well as
other service types, which are expected to be common in future network
environment.
key words: rate control, max-min fairness, elastic services, asynchronous
and distributed algorithm

1. Introduction

Communication network resources, e.g., bandwidth, tend to
be highly variable due to various service classes supported
in high performance networks and due to dynamically vary-
ing network usage and congestion status. In such dy-
namic network environment, available bandwidth, remain-
ing bandwidth in a network after allocating bandwidth to
the stringent service classes (e.g., constant-rate services), is
the useful resource to both users and service providers. It
can be allocated among the users who are willing to receive
less-stringent quality of service with less expensive cost. In
this context, users can use the bandwidth efficiently with lit-
tle sacrifice of service performance while network service
providers are able to maximize the utilization of network re-
sources or the revenue. ABR services in ATM networks and
TCP in the Internet are among such elastic services [1].

The question of whether rate control mechanisms for
elastic services should (or would) achieve a ‘fair’ allocation
of resources among users sharing a network, has been the
focus of both intensive research and debate [2]. There are

Manuscript received June 16, 2003.
Manuscript revised January 7, 2004.
†The author is with the School of Information and Communi-

cation Engineering, Sungkyunkwan University, 300 Cheoncheon-
Dong, Jangan-Gu, Suwon City, Kyungki-Do 440-746, Korea.
††The author is with the Department of Electrical and Computer

Engineering, University of Texas at Austin, Austin, TX 78712,
USA.

a) E-mail: tjlee@ece.skku.ac.kr

two major views on the meaning of fairness, leading to al-
ternative approaches to network control. The first, called
max-min fairness, attempts to make the network transpar-
ent to users, i.e., resources are allocated so as to maximize
the minimum throughput of users contending for network
resources [3]. More general definitions of this type of fair-
ness, might give priority, or weights to users, but have es-
sentially the same structure [4]. The second approach, is
economic in nature, and attempts to allocate resources so as
to maximize the sum of the user’s utilities—assuming such
utility functions are available. Kelly [5] refers to the asso-
ciated allocation as being proportionally fair and discusses
cases where these two criteria coincide. Intuitively, in this
case the throughput achieved by various users will in gen-
eral depend on the number of bottleneck links the connec-
tions share. In a sense, max-min fairness attempts to maxi-
mize the worst case individual user performance, while the
second approach maximizes the network’s overall utility to
users at the possible expense of some individuals. We will
focus on the problem of achieving max-min fairness.

In order to support such elastic services in networks,
typical mechanisms have relied on users’ rate adjustment
based on implicit or explicit feedback on network sta-
tus, e.g., congestion and bandwidth availability. Many re-
searchers have studied how to realize such mechanisms as-
suming fixed number of elastic connections. For research
results and survey of ABR rate-based flow control, see [2],
[6]–[9], and references therein. Some proposed mechanisms
[10]–[14] show that they can achieve a notion of equilib-
rium point, i.e., fair bandwidth allocation [3] among elastic
connections. Feedback control mechanisms for rate alloca-
tion of elastic connections to a single node have been con-
sidered in [15], [16]. A window-based congestion control
achieving proportional fairness has been proposed in [17].
Rate control mechanisms should be designed to be simple
and scalable in order to be viable in a large-scale network-
ing environment where there are strong limitations on the
complexity of the algorithms that can be implemented, see
e.g., [9]. Recently, we have observed some results on this
issue, e.g., a control theoretic framework to achieve max-
min fair allocation of bandwidth [18] and a distributed rate
allocation algorithm based on stochastic approximation of
available capacity [19].

Several issues need to be addressed for rate control al-
gorithms for elastic services:

• The explicit rate control mechanism should have fast

3612
IEICE TRANS. COMMUN., VOL.E87–B, NO.12 DECEMBER 2004

convergence characteristics.
• A simple algorithm is preferred to make the complexity

of rate control reasonable.
• Priorities to connections are able to provide further ser-

vice differentiation.
• In a large-scale network environment, a distributed and

asynchronous algorithm is desirable.
• Fairness [2] needs to be provided to treat elastic con-

nections fairly.
• It is desirable to minimize the amount of information re-

quired (e.g., number of on-going connections and sta-
tus of links).

In this paper, we propose and investigate a simple, dis-
tributed and asynchronous flow control mechanism using
explicit rate. We show rigorously that it achieves quickly
the notion of max-min fair allocation of bandwidth. Our
mechanism is simple, i.e., network switches only needs to
compute total flow of elastic traffic and that of other traf-
fic, and neither per-VC queueing nor per-VC counting of
elastic connections is required. In addition, it is distributed
and thus scalable to large scale networks. It is also asyn-
chronous, i.e., network elements updates feedback informa-
tion independently with one another, which commensurates
with complex and independent network behaviors. Finally,
it can be directly extended to encompass prioritized services
via the notion of weighted max-min fairness. Our proposed
mechanism extensively addresses the above requirements
that a rate allocation algorithm for elastic services in mul-
tiservice networks should have. We demonstrate feasibility
of our mechanism by rigorous analysis and simulations.

This paper is organized as follows. In Sect. 2 we re-
view some notions related to max-min fairness that will be
useful in the sequel and propose the synchronous algorithm.
We show that the algorithm has a unique fixed point and
it achieves max-min fair bandwidth allocation. Moreover
we present a totally asynchronous version of the algorithm
and its convergence to the same max-min fairness in Sect. 3.
Then, we consider the role of round trip delays between
sources and links. We extend the algorithm to the one with
session priorities leading to the notion of weighted max-min
fairness in Sect. 4. As a demonstration of our algorithm, we
conduct simulations in Sect. 5, and conclude in Sect. 6.

2. Proposed Synchronous Algorithm

Our starting point is a simple mechanism for flow control
proposed in [20]. The rationale for the mechanism is as fol-
lows (see Fig. 1) : suppose that n connections share a link

Fig. 1 A network with one link and n sessions (unconstrained sessions).

(switch) with capacity c. If the capacity is to be shared
evenly by the connections, then the fair rate e(t) for each ses-
sion, called “explicit rate,” should be c/n. Assuming the ses-
sions send traffic at this explicit rate, the link flow (typically
measured) will be n times e(t), i.e., f (t) = ne(t). Now, since
the number of active connections n may be unknown, we
might estimate the number implicitly rather than monitor-
ing it explicitly as other rate-based control schemes do [9],
[16]. One can estimate the number of active connections us-
ing n̂(t) = f (t)/e(t). The explicit rate is then computed based
on the estimated number, i.e., e(t + 1) = c/n̂(t). Due to the
capacity constraint, it is desirable to ensure that e(t) can not
exceed the link capacity c, that is, e(t+ 1) = min[c/n̂(t), c].
It may be preferable to limit the e(t) to be even smaller than
c, e.g., peak session rate for any connection in the network.
We will see that this surprisingly simple mechanism can be
extended to a network setting.

We consider a network consisting of a set of buffered
links L each with a (typically measured) current bandwidth
availability �c = (c�, � ∈ L). Suppose a set S of sessions
share the network, where each session s ∈ S has a set of
links Ls associated with it. The set Ls is intended to define
an end-to-end connection through the network. More than
one session might share each link, thus we let S� be the set
of sessions crossing link �†.

Suppose each link � ∈ L measures the aggregate flow
f�(t) it is currently supporting, and computes a local ‘ex-
plicit rate’ e�(t) based on an estimated effective number of
connections. In a scenario with greedy sources the session
rates as(t) are adjusted to be the smallest among the explicit
rates of all links along the route of the session. We propose
the following distributed and synchronous algorithm:

as(t) = min
�∈Ls

[e�(t)], s ∈ S, (1)

f�(t) =
∑
s∈S�

as(t), � ∈ L, (2)

e�(t + 1) = min

[
c�e�(t)

f�(t)
, c�

]
, � ∈ L. (3)

In our mechanism, each intermediate link (switch) �
along the route from a source to a destination computes the
aggregate flow f�(t), which conveys the total sum of ses-
sion rates as(t) from the sessions passing through link � (see
(2)). Note that the flow measurement at each switch does
not require the information on the number of sources (con-
nections) since the only thing each switch needs to do is to
count the total number of cells (packets) passing through
the switch and compute the aggregate flow. So switches
need not know individual as(t) in detail. Based on the aggre-
gate flow at each link �, the switch estimates the explicit rate
e�(t + 1) that it can sustain (see (3)). The minimum of these
explicit rates along the route from a source to a destination
is chosen to be the session rate to which the source needs
to adjust (see (1)). Thus the rate adjustment for the sessions

†In general one might allow for a multi-point session, say s, by
allowing the set Ls to be a rooted tree on the network.

LEE and DE VECIANA: AN ASYNCHRONOUS AND DISTRIBUTED RATE CONTROL MECHANISM
3613

(end hosts) as(t) and the aggregate flows f�(t) are captured
by the proposed iterative algorithm, which extends the idea
of computing explicit rate in the single link network.

The goal of this type of rate adjustment is to ensure
that capacities are fully exploited while achieving max-min
fair rate allocation. Note that the explicit rate at each link
� is updated in a decentralized manner using local informa-
tion c�, e�(t) and f�(t) and exchanges of information along
each session’s path (rate adjustments) rather than requir-
ing exchanges of global states, e.g., whether each session
is constrained or not at the link. The algorithm has clear
advantages in terms of minimizing the information required
to determine the max-min fair allocation in that 1) it needs
not keep track of the number of active connections and 2) it
needs not maintain information on which sessions are con-
strained at each link. We shall show that the fixed point
equation associated with the iterative algorithm (1)–(3) has
a unique solution which is the max-min fair allocation. And
the iterative synchronous algorithm is shown to converge ge-
ometrically to the fixed point, i.e., max-min fair allocation.

In order to investigate that the proposed algorithm
achieves max-min fair allocation of bandwidth, we review
the notion of max-min fairness. The main idea underlying
max-min fairness can be explained as follows: each con-
nection crossing a link should get as much bandwidth as
other such connections unless that session is constrained
elsewhere. In other words, available resources are allocated
equally among unconstrained sessions. Max-min fairness
has the following characteristics:

• each session has a bottleneck link;
• and, unconstrained sessions at a given link are given

their equal share of the available capacity.

To formally define max-min fairness, we will use the bottle-
neck property [3]. It will be useful to consider the max-min
fair allocation in terms of a hierarchy of sets of bottleneck
links and sessions [4] and fair shares [21].

2.1 Existence and Uniqueness

We shall assume the following:

Assumption 2.1: (Bottleneck Link Assumption) Each
bottleneck link has at least one session for which it is the
unique bottleneck link.

This implies that sessions might have more than one bottle-
neck link, but if this is the case, each of the bottleneck links
should carry at least one session for which it is the unique
bottleneck. Assumption 2.1 is a little weaker than that in [3],
but more generalized than that in [4], wherein it is assumed
“single” bottleneck link per session.

Define �e = (e�, � ∈ L) and �a = (as, s ∈ S). Consider
the following fixed point equation derived from the iterative
algorithm (1)–(3)

�e = g(�e) = (g�(�e), � ∈ L) (4)

where

e� = min

[
c�e�

f�
, c�

]
= g�(�e) for all � ∈ L, (5)

and where

f� =
∑
s∈S�

as, � ∈ L and as = min
�∈Ls

[e�], s ∈ S. (6)

We show the existence and uniqueness of a solution �e ∗ to
the fixed point equation (5), and further establish that the
corresponding rate allocation �a ∗ obtained by (6) is unique
and satisfies the max-min fairness criterion.

Theorem 2.1: (Existence and Uniqueness) Suppose As-
sumption 2.1 holds, then the fixed point equation (5) has a
unique solution �e ∗ = (e∗� , � ∈ L). The associated session
rates �a ∗ = (a∗s, s ∈ S) satisfy the max-min fairness criterion,
and are thus unique.

Proof: Let �0 denote zero vector with same dimension as
|L|. Since E = {�e ∈ R|L|| �0 ≤ �e ≤ �c} is compact and g :
E→ E is continuous, it follows by the Brouwer Fixed Point
Theorem [22] that (5) has at least one solution. It follows
from (5) that for any link � ∈ L,

e∗� = min

[
c�e∗�
f ∗
�

, c�

]
⇒

e∗� = c� if f ∗� < c�
e∗� = c�

e∗�
f ∗
�

if f ∗� = c�,

thus we have that

f ∗� =
∑
s∈S�

a∗s, � ∈ L and a∗s = min
�∈Ls

[e∗�], s ∈ S.

We will show that the session rate allocation �a ∗ corre-
sponds to a max-min fair allocation. Consider an arbitrary
session s ∈ S, we show that it has at least one bottleneck
link. Consider s ∈ S, then a∗s = min �∈Ls [e∗�] = e∗�∗ for
some �∗ ∈ Ls. Suppose that the link flow f ∗�∗ < c�∗ , but then
a∗s = e∗�∗ = c�∗ , which contradicts f ∗�∗ < c�∗ . Thus f ∗�∗ = c�∗ .
Now consider the sessions through �∗. For each such ses-
sion r ∈ S�∗ , either a∗r = e∗�∗ = a∗s (“constrained” at link �∗)
or a∗r < e∗�∗ = a∗s (constrained elsewhere). Thus a∗s ≥ a∗r
for all r ∈ S�∗ , whence �∗ is a bottleneck link for session s.
Therefore, �a ∗ is a max-min fair allocation which is unique
by the Theorem in [21].

Now, consider a solution �e ∗. The explicit rate e∗�∗ at
each bottleneck link �∗ must be unique since by Assumption
2.1 the link is the only bottleneck for at least one session s
of which the session rate is unique, i.e., a∗s = min�∈Ls [e∗�] =
e∗�∗ , and the explicit rate of non-bottleneck link is its link ca-
pacity c� which is unique. So the uniqueness of the solution
�e ∗ follows. �

2.2 Synchronous Iterative Algorithm without Delayed In-
formation

In this subsection, we assume that explicit rate updates
and flow adjustments occur synchronously on some discrete
time step. In other words, the explicit rates at links are up-
dated exactly at the same time.

3614
IEICE TRANS. COMMUN., VOL.E87–B, NO.12 DECEMBER 2004

Theorem 2.2: (Convergence of Synchronous Iterative
Algorithm) Suppose Assumption 2.1 holds, then the ex-
plicit rates �e(t) = (e�(t), � ∈ L) in the iteration (1)–(3) con-
verge geometrically to the fixed point �e ∗ of (2.1) and the
associated session rates �a ∗ achieve the max-min fair rate al-
location.

Proof: Recall the hierarchy of bottleneck links and ses-
sions defined in Sect. 2. Note thatU(i) is the cumulative set
of bottleneck links in levels 1 to i andV(i) is the cumulative
set of bottleneck sessions in levels 1 to i. Theorem 2.2 is a
consequence of Lemma 2.1. �

Lemma 2.1: (Convergence of Explicit Rates and Ses-
sion Rates) Given an initial vector �e(0), there exists a time
tN , where N is the number of hierarchy levels, such that for
all t ≥ tN , the explicit rates of bottleneck links � ∈ U(N)

and the associated session rates s ∈ V(N) converge geomet-
rically to e∗� and a∗s, respectively. Moreover, the explicit rates
of non-bottleneck links � ∈ L \U(N) also converge geomet-
rically to the corresponding link capacities c� for t ≥ tN+1,
where tN+1 ≥ tN , that is

max
�∈U(N)

|e�(t) − e∗� | ≤ ANγ
t
N ,

max
s∈V(N)

|as(t) − a∗s | ≤ BNγ
t
N ,

max
�∈L\U(N)

|e�(t) − c� | ≤ AN+1γ
t
N+1,

and 0 < γN < 1, 0 < γN+1 < 1, AN > 0, BN > 0, AN+1 > 0.

Lemma 2.1 is the key lemma to show the convergence
of the synchronous iterative algorithm (1)–(3) and is proved
in [21]. For that purpose, we also need Lemmas [21], which
present monotonicity of lower bound e�(t) and upper bound
e�(t) of explicit rate e�(t). In addition, we use Lemmas [21]
where both lower and upper bound are shown to converge
geometrically to e∗� .

The proof of Theorem 2.2 uses the following ideas.
Consider a link � whose flow consists of constrained and
unconstrained sessions, see Fig. 2. Neither the constrained
flow α� nor the number of unconstrained connections n� are
known explicitly. The explicit rate update is given by

e�(t + 1) = min

[
c�e�(t)

f�(t)
, c�

]

= min

[
c�e�(t)

α� + n�e�(t)
, c�

]
�
= g�(e�(t)).

It can be shown that g�(�) is a pseudo-contraction [22] and
e�(t + 1) = g�(e�(t)) is a pseudo-contracting iteration con-
verging to e∗� , the fixed point of g�(�). Note that we do not
have a fixed point at zero if we start from non-zero e�(0)
since e�(t + 1) ≥ e�(t) when e�(t) ≤ e∗� for all t. Figure 3
shows how the pseudo-contracting property arises. Thus

|e�(t + 1) − e∗� | ≤ ξ�|e�(t) − e∗� |, 0 < ξ� < 1,

where e∗� = (c� − α�)/n� is the fair share of the remaining
capacity (c�−α�) to be allocated to the n� unconstrained ses-
sions (see Sect. 2 for the definition of ‘fair share’). We can

Fig. 2 Constrained and unconstrained sessions on a link �.

Fig. 3 A pseudo-contraction of g�(�).

show similar pseudo-contraction properties in the network
setup using the bottleneck hierarchy.

At each level of the bottleneck hierarchy, the explicit
rates of the associated bottleneck links can be shown to
eventually have lower and upper bounds e�(t) and e�(t), i.e.,

e�(t) ≤ e�(t) ≤ e�(t) for � ∈ L(i),

and they converge geometrically to the fair share e∗� = xi =

(c� − αi∗
�)/ni

� for � ∈ L(i) at the ith bottleneck level. So the
explicit rates of ith level bottleneck links converge to e∗� geo-
metrically. We can show that the algorithm quickly achieves
max-min fairness using these properties by induction on the
bottleneck hierarchy. Furthermore, the explicit rates of non-
bottleneck links em(t) converge to the link capacities cm ge-
ometrically.

Based on the previous result, we can construct a box
in a space of dimension |L| at each time t by taking the
maximum of geometric converging sequences among all the
links, see Lemma 2.1. The box shrinks as updates proceed,
and it includes all the possible explicit rates at a specific time
t, so that any sequence of explicit rates converge to the fair
shares or link capacities. These boxes provide the founda-
tion for proving that ‘asynchronous’ updates will converge
as will be discussed in the following subsection.

3. Proposed Asynchronous Algorithm with Round
Trip Delays

In practice, the explicit rate indications e�(t) of links will ex-
perience delays while they propagate back to the sources and
until they are eventually reflected in the incident flows on the
link. We assume in Sect. 2 that newly modified explicit rates
at time t appear by the time the update is made in the link
flow f�(t) without delay. That is the link flow reflects the ex-
plicit rates computed at time t. This condition is relaxed in

LEE and DE VECIANA: AN ASYNCHRONOUS AND DISTRIBUTED RATE CONTROL MECHANISM
3615

Sect. 3. The issue of feasibility, i.e., maintaining link flows
not exceeding link capacities is also discussed, and the al-
gorithm with session priorities is presented in Sect. 4.

3.1 Asynchronous Iterative Algorithm without Delayed
Information

In the synchronous algorithm, updates of the explicit rates
at links are assumed to be perfectly synchronized. In prac-
tice, this is unlikely to be the case, so next we consider how
asynchronism would affect convergence. We use the asyn-
chronous model in [22] to formulate a totally asynchronous
version of the algorithm and prove its convergence.

Each link � ∈ Lmay not have access to the most recent
values of components of �e. That is the flow on link �may re-
flect old information about other links’ states. Let T � denote
a set of times at which e� is updated. We shall assume that
there is a set of times T = {0, 1, 2, · · ·} at which one or more
components of �e(t) are updated. An asynchronous iteration
can be described by

e�(t + 1) =

min
[

c�e�(t)
f�(t)
, c�
] �
= g�(�e(t)), t ∈ T �

e�(t), otherwise.

(7)

Note that f�(t) depends on the possibly outdated explicit
rates indication in the network, i.e.,

f�(t) = h�
(
e1(τ�1(t)), e2(τ�2(t)), · · · , e�(τ�|L|(t))

)
=
∑
s∈S�

min
m∈Ls

[em(τ�m(t))],

where τ�m(t) is the most recent time for which em is known
to link � through incident flow f�(t) at the link (see (1)–(3)),
0 ≤ τ�m(t) ≤ t for all t ∈ T and τ�

�
(t) = t for all t ∈ T �. In

the asynchronous iterative algorithm, the explicit rate e� is
updated using the link flow carrying explicit rates em(τ�m(t))
known to � when t ∈ T �, otherwise it remains unchanged. It
is assumed here that τ�m(t) → ∞ as t → ∞. This assump-
tion implies that every link updates its explicit rate infinitely
often as t → ∞. In this case following theorem applies.

Theorem 3.1: (Convergence of Asynchronous Iterative
Algorithm) The explicit rates �e(t) in the asynchronous im-
plementation proposed in (7) converge to the fixed point �e ∗
of (5) and the associated session rates �a(t) converge to the
max-min fair rates �a ∗.

Proof: From Lemma 2.1, let A = max[AN , AN+1], γ =
max[γN , γN+1], C = max�∈L[c�], and

E(t) =

{ {�e | ||�e − �e ∗||∞ ≤ Aγt }, t ≥ tN+1,
{�e | ||�e − �e ∗||∞ ≤ max[AγtN+1 ,C] }, t < tN+1,

then following conditions hold.

1. We have E(t + 1) ⊂ E(t), and g(�e) ∈ E(t + 1) for all
t and �e ∈ E(t). The sequence {�e(t)} converges to �e ∗
by Theorem 2.2 (Convergence of Synchronous Itera-
tive Algorithm).

2. The set E(t) satisfies the Box Condition [22] for all t.
That is there exist sets Ei(t) ⊂ Ei(0) for all t, such that

E(t) = E1(t) × E2(t) × · · · × E|L|(t).

3. Initial explicit rate vector �e(0) is in the set E(0).

Thus by Asynchronous Convergence Theorem [22], the
asynchronous iteration (7) converges to �e ∗. �
Asynchronous convergence ensures that although links up-
date explicit rates independently, the allocation will con-
verge as in the synchronous algorithm, though it may take
longer to do so.

In Sect. 2.2 and Sect. 3.1, we considered the conver-
gence of synchronous and asynchronous decentralized up-
dates based on local information. In practice delays will be
incurred in the communication between sources and links.
We consider the role of the delays in the following subsec-
tion.

3.2 Iterative Algorithm with Round Trip Delays

In the preceding analysis, the link flow f�(t) was assumed to
be the sum of session rates as(t) traversing link �. The ses-
sion rates were in turn assumed to be as(t) = min�∈Ls [e�(t)],
i.e., the incident flows at time t reflect the computed explicit
rates at the time t with no delay. In reality, the link flows
would be immediately measured at each link, and would de-
pend on delayed explicit rate indications computed at links
and sent back to sources in order to control the source rates.
We will present an example to show the oscillations that
arise due to propagation delay.

Consider the network shown in Fig. 4 with one link
shared by two sessions. Suppose the link capacity is c� = 1,
the initial explicit rate is e�(0) = 0.25, and the Round Trip
Delay (RTD) is assumed to be 1 time unit for both sessions.
Thus the explicit rate takes at most 1 unit of time to propa-
gate back to the sources and be reflected in the incident flow
on the link, i.e., f�(t) = 2e�(t − 1). The explicit rate update
would be

e�(t + 1) = min

[
c�e�(t)

f�(t)
, c�

]
= min

[
e�(t)

2e�(t − 1)
, 1

]
,

which results in the oscillation shown in Fig. 5.
One way of preventing oscillation is to update the ex-

plicit rate at each link only after the worst case RTD, D�
has elapsed, where D� is the worst case RTD of the sessions
sharing link �. In other words, explicit rate e�(t) is updated
only after the link receives newly modified source rates reg-
ulated by the last computed local explicit rate. This scheme

Fig. 4 Network example with two ABR sessions with round trip delay.

3616
IEICE TRANS. COMMUN., VOL.E87–B, NO.12 DECEMBER 2004

Fig. 5 Oscillation of explicit rate in the network example without
considering RTD.

Fig. 6 A network with a new session 5.

can be shown to converge to the same max-min fair alloca-
tion. The explicit rate update of link � is then

e�(t + 1) = min

[
c�e�(t − D�)

f�(t)
, c�

]
, � ∈ L. (8)

Thus stability can be achieved by delaying updates, or alter-
natively as suggested in [20] by damping the measurements
and computation. The proof of convergence is the same as
that of the synchronous convergence result stated in Theo-
rem 2.2.

3.3 Feasibility Issue of Rate Control Mechanism

An allocation is said to be feasible if the link flows do not
exceed the link capacities. In our algorithm, link flow may
temporarily exceed capacity causing queue buildups. For
example, Figs. 6 and 7 show a case where a new session 5
is setup after the other sessions in the network have reached
the max-min fair allocation. Before the new session 5 is
setup, two and three connections traverse link 1 and link 2,
respectively, while link capacities c1 and c2 are all 1. So
link 2 is a bottleneck link and the fair share e2 =

1
3 , and

the sessions 1, 3, and 4 adjust their rates to the fair share
(a1 = a3 = a4 =

1
3). Then the available bandwidth at link 1

is 2
3 (= 1 − 1

3). So the fair share e1 =
2
3 and the session rate

a2 =
2
3 since only session 2 is contending for the available

bandwidth at link 1. Thus it achieves max-min fair alloca-
tion �a ∗ = (1

3 ,
2
3 ,

1
3 ,

1
3), and then it quickly adjusts to its new

max-min fairness �a ∗ = (1
4 ,

1
2 ,

1
4 ,

1
4 ,

1
4) after the new session.

The infeasibility can be mitigated by damping the com-
putation of explicit rates. Damping of explicit rates by net-
work adjustment will lessen the abrupt ramp-up or down of
rates, and allow sufficient time for the network to adapt to
the varying session rates and link flows and presumably pre-
vent from excessive infeasibility. It can be shown that the

Fig. 7 Explicit rates, link flows and session rates when a new session 5
is setup.

damped version of the algorithm also converges to the solu-
tion of the algorithm without damping by similar steps fol-
lowed in the proof of Theorem 2.2.

Another approach to manage the variability in a dy-
namic environment is to constrain sources to make slow rate
adjustments particularly upon entering and increasing their
rates: the session rates can not be increased rapidly when
they are admitted to a network, rather they are permitted to
increase their rates by only a little amount at a time so that
the network will have sufficient time to recognize the num-
ber of connections by measuring the flow. This approach
can be considered as damping source behavior.

We believe that single bit indication of queue status can
be used in conjunction with our scheme to prevent the ex-
cessive queue buildup when link flows exceed the available
resource transiently. In the scheme, sources slow down their
change of rates if queue starts to build up, otherwise they
speed up to achieve the desired max-min fairness quickly.
In a sense, the single bit indication scheme can take care of
the feasibility while the explicit rate control mechanism can
ensure fast convergence to fair rates. The single bit queue in-
dication scheme might be jointly combined with the damp-
ing at sources such as linear growth of source rate. While
damping of explicit rates at network links and/or damping
of session rates at sources manages to keep the queue from
growing beforehand, the single bit indication scheme pri-
marily reduces the queue already built-up.

An even more conservative approach would be to em-
ploy a safety margin on available capacity. Suppose we have

LEE and DE VECIANA: AN ASYNCHRONOUS AND DISTRIBUTED RATE CONTROL MECHANISM
3617

network utilization factor ρ, where 0 < ρ < 1, and the link
capacity to be shared is only c̄� = ρc�. We then have spare
capacity (1−ρ)c� to absorb the transient overshoot above vir-
tual capacity c̄� leading to implicit control of queue buildup.
The max-min fair allocation of resources would be defined
with respect to the new capacities c̄�, � ∈ L.

Combining these ideas, we can significantly improve
the feasibility and thus performance in a dynamic network
environment. There have been algorithms designed to guar-
antee feasibility. They, however, might also experience tran-
sient infeasibility if the instantaneous available bandwidth
is highly variable, which might be typical in integrated ser-
vices networks, and buffering should be provided to tackle
the problem [9], [16].

4. Iterative Algorithm with Session Priority

It may be useful to allow sessions to have different priorities
in an attempt to differentiate applications with different QoS.
We can formulate an iterative algorithm wherein a priority
ws, where ws ≥ 1, of a session s plays a role as follows:

as(t) = ws min
�∈Ls

[e�(t)], s ∈ S, (9)

f�(t) =
∑
s∈S�

as(t), � ∈ L, (10)

e�(t + 1) = min

[
c�e�(t)

f�(t)
, c�

]
, � ∈ L. (11)

Note that the computation of explicit rates is still conducted
locally in a decentralized manner and the priority ws is dealt
with at the source leading to the same structure of distributed
computation as in the preceding algorithms.

We can now define a bottleneck hierarchy with priority
and a notion of weighted fair share following a similar pro-

cedure as in Sect. 2. LetU(i)
= ∪i

j=1L
(j)

andV(i)
= ∪i

j=1S
(j)

be the cumulative set of bottleneck links and sessions, re-
spectively, in levels 1 to i of the hierarchy with priority. The
weighted fair share xi

� can be defined as a weighted fair par-
tition of available capacity at link � in the ith level of the
hierarchy:

xi
� =

c� − αi∗
�

ni
�

, (12)

where αi∗
� =

∑
s∈S�∩V(i−1) a∗s is the total flow of sessions

through � constrained by bottleneck links in U(i−1)
, and

ni
� =
∑
S�\V(i−1) ws is the effective number of sessions through

� unconstrained by the links in U(i−1)
. Note that α1∗

� = 0 in
the 1st level of the hierarchy.

Based on the weighted fair share, the set of ith level
bottleneck links and sessions with priority can be defined
as:

L(i)
= {� ∈ L \ U(i−1) | f ∗� = c�

and for all s ∈ S�, a∗s
ws
= xi
= min

m∈L\U(i−1)
xi

m},

S(i)
= {s ∈ S \ V(i−1) | s ∈ S� and � ∈ L(i)}. (13)

Here L(i)
is the set of ith level bottleneck links such that the

sessions in S(i)
are allocated weighted minimum fair share

in the network, i.e., for s ∈ S(i)
,

a∗s
ws
= min

r∈S\V(i−1)
a∗r
wr
= xi,

thus each session sharing the link receives bandwidth in pro-
portion to its priority, i.e., a∗s = wsxi. Note that xi

= xi
� for

� ∈ L(i)
is the weighted fair share of the bottleneck links

in the ith level hierarchy. The construction of the bottle-
neck hierarchy with priority is analogous to that of Sect. 2
resulting in set of bottleneck links and sessions with priority

L(1)
, · · · ,L(N)

and S(1)
, · · · ,S(N)

.
One can show that (9)–(11) will converge and allocate

bandwidth to the sessions proportional to the weights ws,

i.e., a∗s = wsxi for all s ∈ S(i)
, which is “weighted fair”

leading to weighted fair allocation �a
∗
= (a∗s, s ∈ S).

5. Simulations

We have proposed a simple rate control framework for elas-
tic services using explicit rate and analyzed its convergence
to (weighted) max-min fair allocation of bandwidth both
synchronously and asynchronously. In this section, we con-
duct simulations to verify the analysis results and to further
investigate our proposed algorithm. We have used NIST
ATM simulator [23], and modified switch, broadband ter-
minal equipment, and traffic source modules to incorporate
our distributed and asynchronous rate control algorithms.

We adopt several notations defined in ABR context,
i.e., Minimum Cell Rate (MCR), ms, Allowable Cell Rate
(ACR), as, and Peak Cell Rate (PCR), ps, which denote
guaranteed minimum rate, allowable transmission rate, and
upper bound of transmission rate, respectively. We will as-
sume that each session s has a dedicated access link �s ∈ Ls

with a capacity ps corresponding to the source’s PCR. This
will ensure that as ≤ ps and make the description of al-
gorithm simple since we consider as(t) = min�∈Ls [e�(t)]
instead of using as(t) = min�∈Ls [ps, e�(t)]. Moreover we
assume persistent greedy elastic connections, which trans-
mit at their current ACR.

In our rate control mechanism, each switch approxi-
mates aggregate flow f�(t) of elastic connections and avail-
able capacity for elastic connections by measuring traffic
during a measurement window. The duration of the mea-
surement window has to be short enough to capture the vari-
ation of total flow or available capacity and long enough
to lessen computing overheads at switches. Then it com-
putes a local ‘explicit rate’ e�(t) at every update intervals.
We set the update interval to be greater than the maximum
RTD D� since the update interval is required to be greater
than or equal to the maximum RTD to prevent oscillation
as shown in Sect. 3.2. RTD can be measured by investigat-
ing Resource Management (RM) cells transmitted from the
sources at regular intervals. We assume that RM cells are
generated at every other 32 data cells.

3618
IEICE TRANS. COMMUN., VOL.E87–B, NO.12 DECEMBER 2004

Fig. 8 Simulation scenario with five switches, eight elastic connections
and one mpeg source.

Table 1 Arrival and departure time of connections.

Connection Arrival Departure Switches
time [sec] time [sec] traversed

a1 0 ∞ sw1, sw2
a2 0 ∞ sw1, sw2, sw3
a3 1 3 sw1, sw2, sw3, sw4
a4 2 4 sw1, sw2, sw3, sw4, sw5
a5 0 ∞ sw1, sw2
a6 0 ∞ sw1, sw2, sw3
a7 1 ∞ sw1, sw2, sw3, sw4
a8 2 ∞ sw1, sw2, sw3, sw4, sw5

mpeg1 0 ∞ sw1, sw2, sw3, sw4, sw5

Switching devices send computed explicit rate to the
sources, if the current transmission rate indication in the
packet is higher than the computed explicit rate at the
switch. Note the explicit rate is modified either on the for-
ward or backward trip. Thus the source receives the mini-
mum explicit rate for links along its route. The role of each
source is to adjust the current transmission rate ACR as(t)
so that it does not exceed the explicit rate indication, or the
session’s PCR constraint.

We have simulated a network of five switches and eight
elastic connections (see Fig. 8). One MPEG source traverses
all the switches in the network. The MPEG source consists
of multiplexed 10 movies and news clips with the duration
of 10 seconds [24]. In order to observe the behavior of the
mechanism, elastic connections enter and leave the network
dynamically as indicated in Table 1.

Capacity of links/switches is assumed to be 155 Mbps.
The distances between the sources/destinations and the
switches are set to 0.2 km, and the distance between the
switches is set to 300 km, which corresponds to WAN en-
vironment. Assuming the signal propagation speed is 2 ×
105 km/sec, the end-to-end distance of 100 km corresponds
to 1 msec. So the maximum RTD is about 12 msec, and the
update interval of explicit rates is assumed to be 12 msec.
The oscillation phenomenon can be prevented by updating
explicit rates every 12 msec. And the measurement interval
for available capacity and flow was set to 0.6 msec. Thus
available capacity and flow are measured 20 times during

Fig. 9 An MPEG source collected from 10 news and video clips.

Fig. 10 Available capacity for elastic connections at switch 1.

Fig. 11 Flow of elastic connections at switch 1.

each update interval of explicit rates and the measurements
are moving-averaged. The computation and measurement of
explicit rates, flow, and available capacity are damped with
damping coefficient of 0.8 to smoothen the abrupt variation.

The simulation results are shown in Fig. 10–Fig. 14.
Since an MPEG source (Fig. 9) traverses all the switches
during simulations, the measured available bandwidth for

LEE and DE VECIANA: AN ASYNCHRONOUS AND DISTRIBUTED RATE CONTROL MECHANISM
3619

Fig. 12 Explicit rate computed at switch 1.

Fig. 13 Data rate at source 1.

Fig. 14 Queue status at switch 1.

elastic connections varies around 70 Mbps (Fig. 10), which
correctly tracks the available capacity for elastic connec-
tions after allocating sufficient bandwidth to the MPEG
source.

We observe that the explicit rates are quickly updated
as the number of elastic connections dynamically varies at
switch 1 (see Fig. 12). Note that there are 4 connections
during [0,1] sec, 6 during [1,2] sec, 8 during [2,3] sec, 7 dur-

ing [3,4] sec, and 6 during [4,5] sec, respectively. The com-
puted explicit rate indications were 17.5 Mbps, 11.7 Mbps,
8.8 Mbps, 10 Mbps and 11.7 Mbps during each second,
which is matched with the correct fair share. Thus we ver-
ify that the proposed mechanism correctly tracks the varying
traffic flow and updates explicit rates accordingly.

The actual flow measurement (70 Mbps) of elastic con-
nections at switch 1 is shown to match with the remaining
available bandwidth at switch 1 after the MPEG source is al-
located its bandwidth (85 Mbps) among the switch capacity
of 155 Mbps as shown in Fig. 11. And the switch capac-
ity is fully utilized by the MPEG source and eight elastic
connections as expected. Thus the available capacity and
elastic flow measurement quickly reflects the network sta-
tus. The sources are shown to follow the rate regulation fed
back from the switches to the sources (Fig. 13).

In order to investigate the feasibility, we have also ob-
served queue dynamics. We have checked if data build up
in the queues during the operation. The number of packets
(cells) in the queue at switch 1 is shown to be maintained
below 1000, which is a sign of stable operation of our al-
gorithm. Thus we have verified the correctness, network
dynamics, and feasibility of our algorithms via simulations.

6. Conclusion

In this paper, we have investigated a simple flow control
mechanism using explicit rate. We have formulated a de-
centralized iterative algorithm and shown that the solution of
fixed point equation associated with the algorithm is unique,
and the algorithm converges geometrically to the (weighted)
max-min fair allocation of resources. We have proposed
asynchronous version of the algorithm leading to the same
(weighted) max-min fairness. These algorithms operate in
a distributed manner accounting for the heterogeneity of a
large-scale high speed network.

It has been shown that they quickly achieve notion
of global max-min fair rate allocation for contending users
sharing resources through decentralized adjustment of ex-
plicit rates. The algorithms are simple in that they do not re-
quire that the links keep track of the number of constrained
and unconstrained connections as some rate based flow al-
gorithms did. Hence it has clear scalability advantage in
terms of both complexity and state information. In addition,
priority can easily be incorporated by a weight given to each
session, and thus differentiated quality of service per con-
nection is possible. We have considered the feasibility issue
and extended the algorithms so as to deal with priorities of
sessions. We then have verified the algorithm by simulations
showing that it indeed achieves the desirable characteristics
for rate control of elastic connections.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their valuable comments.

3620
IEICE TRANS. COMMUN., VOL.E87–B, NO.12 DECEMBER 2004

References

[1] G. de Veciana, T.J. Lee, and T. Konstantopoulos, “Stability and
performance analysis of networks supporting elastic services,”
IEEE/ACM Trans. Netw., vol.9, no.1, pp.2–14, Feb. 2001.

[2] F. Bonomi and K.W. Fendick, “The rate-based flow control frame-
work for the available bit rate ATM service,” IEEE Netw. Mag.,
vol.9, no.2, pp.25–39, March/April 1995.

[3] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall, 1992.
[4] E.M. Gafni and D. Bertsekas, “Dynamic control of session input

rates in communication networks,” IEEE Trans. Autom. Control,
vol.29, no.11, pp.1009–1016, 1984.

[5] F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans.
Telecommun., vol.8, pp.33–37, 1997.

[6] R. Jain, S. Kalyanaraman, and R. Viswanathan, “The OSU scheme
for congestion avoidance using explicit rate indication,” ATM Fo-
rum, 94-0883, Sept. 1994.

[7] R. Jain, S. Kalyanaraman, and R. Viswanathan, “Simulation results:
The EPRCA+ scheme,” ATM Forum, 94-0988, Oct. 1994.

[8] K.Y. Siu and H.Y. Tzeng, “Adaptive proportional rate control for
ABR service in ATM networks,” Tech. Rep. 94-07-01, ECE Dept.
U.C. Irvine, July 1994.

[9] A. Charny, K.K. Ramakrishnan, and A. Lauck, “Time scale analysis
and scalability issues for explicit rate allocation in ATM networks,”
IEEE/ACM Trans. Netw., vol.4, pp.569–581, 1996.

[10] F. Bonomi, D. Mitra, and J.B. Seery, “Adaptive algorithms for
feedback-based flow control in high-speed wide-area ATM net-
works,” IEEE J. Sel. Areas Commun., vol.13, no.7, pp.1267–1283,
Sept. 1995.

[11] S.P. Abraham and A. Kumar, “A stochastic approximation approach
for max-min fair adaptive rate control of ABR sessions with MCRs,”
Proc. IEEE INFOCOM, pp.1358–1365, 1998.

[12] F.P. Kelly, A.K. Mauloo, and D.K.H. Tan, “Rate control in commu-
nication networks shadow prices, proportional fairness and stabil-
ity,” J. Oper. Res. Soc., vol.15, no.49, pp.237–255, 1998.

[13] R.J. La and V. Anantharam, “Charge-sensitive TCP and rate control
in the Internet,” Proc. IEEE INFOCOM, pp.1116–1175, 2000.

[14] S. Low and D. Lapsley, “Optimization flow control, i: Basic al-
gorithm and convergence,” IEEE/ACM Trans. Netw., vol.7, no.6,
pp.861–874, Dec. 1999.

[15] L. Benmohamed and S.M. Meerkov, “Feedback control of conges-
tion in packet switching networks the case of a single congested
node,” IEEE/ACM Trans. Netw., vol.1, no.6, pp.693–709, Dec.
1993.

[16] C.F. Su, G. de Veciana, and J. Walrand, “Explicit rate flow con-
trol for ABR services in ATM networks,” IEEE/ACM Trans. Netw.,
vol.8, no.3, pp.350–361, June 2000.

[17] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Netw., vol.8, no.5, pp.556–567, Oct.
2000.

[18] S. Chong, S. Lee, and S. Kang, “A simple, scalable, and stable ex-
plicit rate allocation algorithm for max-min flow control with mini-
mum rate guarantee,” IEEE/ACM Trans. Netw., vol.9, no.3, pp.322–
335, June 2001.

[19] S.P. Abraham and A. Kumar, “A new approach for asynchronous
distributed rate control of elastic sessions in integrated packet net-
works,” IEEE/ACM Trans. Netw., vol.9, no.1, pp.15–30, Feb. 2001.

[20] C. Fulton, S.Q. Li, and C.S. Lim, “An ABR feedback control scheme
with tracking,” Proc. IEEE INFOCOM, pp.806–815, 1997.

[21] T.J. Lee, Traffic Management and Design of Multiservice Networks:
The Internet and ATM Networks, Ph.D. Thesis, Dept. of ECE, Uni-
versity of Texas, Austin, 1999.

[22] D. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical methods, Prentice Hall, 1989.

[23] The NIST ATM Simulator, NIST, 1995.
[24] MPEG sources, http://www-info3.informatik.uniwuerzburg.de/rose

Tae-Jin Lee received his B.S. and M.S.
in electronics engineering from Yonsei Univer-
sity, Korea in 1989 and 1991, respectively, and
his M.S.E. in eletrical engineering and computer
science from University of Michigan, Ann Ar-
bor in 1995. He received his Ph.D. in electrical
and computer engineering from the University
of Texas at Austin in 1999. From 1999 to 2001,
he has been a senior engineer at Corporate R &
D Center, Samsung Electronics Co. Ltd. Since
2001, he has been an Assistant Professor at the

School of Information and Communication Engineering in Sungkyunkwan
University, Korea. His research interests include performance evaluation,
traffic management and design of communication networks and systems,
wireless LAN/PAN, ad-hoc networks, and optical networks.

Gustavo de Veciana received his B.S.,
M.S, and Ph.D. in electrical engineering from
the University of California at Berkeley in 1987,
1990, and 1993 respectively. He is currently
a Professor at the Department of Electrical
and Computer Engineering at the University of
Texas at Austin. His research focuses on the
design, analysis and control of telecommunica-
tion networks. Current interests include: mea-
surement, modeling and performance evalua-
tion; wireless and sensor networks; architectures

and algorithms to design reliable computing and network systems. Dr. de
Veciana has been an editor for the IEEE/ACM Transactions on Network-
ing. He is the recipient of General Motors Foundation Centennial Fellow-
ship in Electrical Engineering and a 1996 National Science Foundation CA-
REER Award, co-recipient of the IEEE William McCalla Best ICCAD Pa-
per Award for 2000, and co-recipient of Best Paper in ACM Transactions
on Design Automation of Electronic Systems, Jan 2002–2004.
E-mail: gustavo@ece.utexas.edu

